3.97 \(\int \frac {x^3}{\sqrt {a x+b x^4}} \, dx\)

Optimal. Leaf size=224 \[ \frac {\sqrt {a x+b x^4}}{2 b}-\frac {a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}} \]

[Out]

1/2*(b*x^4+a*x)^(1/2)/b-1/12*a^(2/3)*x*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)
*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)
+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((a^(2/3)-a^(1/3)*
b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b/(b*x^4+a*x)^(1/2)/(b^(1/3)*x*(a^(1/3
)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2024, 2011, 329, 225} \[ \frac {\sqrt {a x+b x^4}}{2 b}-\frac {a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[a*x + b*x^4],x]

[Out]

Sqrt[a*x + b*x^4]/(2*b) - (a^(2/3)*x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a
^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt
[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(4*3^(1/4)*b*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3
])*b^(1/3)*x)^2]*Sqrt[a*x + b*x^4])

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^3}{\sqrt {a x+b x^4}} \, dx &=\frac {\sqrt {a x+b x^4}}{2 b}-\frac {a \int \frac {1}{\sqrt {a x+b x^4}} \, dx}{4 b}\\ &=\frac {\sqrt {a x+b x^4}}{2 b}-\frac {\left (a \sqrt {x} \sqrt {a+b x^3}\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x^3}} \, dx}{4 b \sqrt {a x+b x^4}}\\ &=\frac {\sqrt {a x+b x^4}}{2 b}-\frac {\left (a \sqrt {x} \sqrt {a+b x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^6}} \, dx,x,\sqrt {x}\right )}{2 b \sqrt {a x+b x^4}}\\ &=\frac {\sqrt {a x+b x^4}}{2 b}-\frac {a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 64, normalized size = 0.29 \[ \frac {x \left (-a \sqrt {\frac {b x^3}{a}+1} \, _2F_1\left (\frac {1}{6},\frac {1}{2};\frac {7}{6};-\frac {b x^3}{a}\right )+a+b x^3\right )}{2 b \sqrt {x \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/Sqrt[a*x + b*x^4],x]

[Out]

(x*(a + b*x^3 - a*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)]))/(2*b*Sqrt[x*(a + b*x^3)
])

________________________________________________________________________________________

fricas [F]  time = 0.77, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{4} + a x} x^{2}}{b x^{3} + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a*x)*x^2/(b*x^3 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\sqrt {b x^{4} + a x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x^3/sqrt(b*x^4 + a*x), x)

________________________________________________________________________________________

maple [C]  time = 0.10, size = 688, normalized size = 3.07 \[ -\frac {\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) b}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) b}}\, a \EllipticF \left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) b x}}+\frac {\sqrt {b \,x^{4}+a x}}{2 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^4+a*x)^(1/2),x)

[Out]

1/2*(b*x^4+a*x)^(1/2)/b-1/2*a*(1/2*(-a*b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*((-3/2*(-a*b^2)^(1/3)/b+1/
2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(-1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(x-(-a*b^2)^(1/3)/b)*x)^(
1/2)*(x-(-a*b^2)^(1/3)/b)^2*((-a*b^2)^(1/3)*(x+1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(-1/2*(-a*
b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(x-(-a*b^2)^(1/3)/b)/b)^(1/2)*((-a*b^2)^(1/3)*(x+1/2*(-a*b^2)^(1/
3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(-1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(x-(-a*b^2)^(1/3)/
b)/b)^(1/2)/(-3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(-a*b^2)^(1/3)/((x-(-a*b^2)^(1/3)/b)*(x+1/2
*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*(x+1/2*(-a*b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*b*x)
^(1/2)*EllipticF(((-3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(-1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*
(-a*b^2)^(1/3)/b)/(x-(-a*b^2)^(1/3)/b)*x)^(1/2),((3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*(1/2*(-
a*b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/(3/2*(-a*
b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\sqrt {b x^{4} + a x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/sqrt(b*x^4 + a*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3}{\sqrt {b\,x^4+a\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a*x + b*x^4)^(1/2),x)

[Out]

int(x^3/(a*x + b*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\sqrt {x \left (a + b x^{3}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**4+a*x)**(1/2),x)

[Out]

Integral(x**3/sqrt(x*(a + b*x**3)), x)

________________________________________________________________________________________